COUNTING LATTICE POINTS AND THE NUMBER $2i + 7$

STEVEN SAM

ABSTRACT. Let P be a lattice d-dimensional polytope. A theorem of E. Ehrhart states that the number of lattice points of nP (the n-th dilate of P), as a function of positive integers n, agrees with a polynomial of degree d (the Ehrhart polynomial of P). In this talk, I will give a review of Ehrhart polynomials and discuss a paper of C. Haase and J. Schicho that classifies all such polynomials for $d = 2$.

If we replace “lattice polytope” by “rational polytope,” the word “polynomial” becomes “polynomial with periodic coefficients” (quasi-polynomials). I will discuss known bounds for the periods of Ehrhart quasi-polynomials, but show that in some cases, they are ordinary polynomials. I will also show that the classification for $d = 2$ is incomplete if we consider rational polygons whose Ehrhart quasi-polynomial is a polynomial, and present some conjectures that I like about why some polytopes have smaller period than the known bounds suggest.

An integral polygon in \mathbb{R}^2 is one whose vertices have integer coordinates. It need not be convex.

Theorem 0.1 (Pick 1899). Let P be an integral polygon in \mathbb{R}^2. Let $A = A(P)$ be the area of P. Let $I = I(P)$ be the number of interior lattice points. Let $B = B(P)$ be the number of points on the boundary of P. Then $A = I + B/2 - 1$.

Let $t \in \mathbb{Z}_{>0}$. Let $tP = \{tx : x \in P\}$. Then $A(tP) = A(P)t^2$ and $B(tP) = B(P)t$. One finds that
\[
\#(tP \cap \mathbb{Z}^2) = At^2 + \frac{B}{2}t + 1.
\]

Theorem 0.2 (Ehrhart 1962). Let $P \subset \mathbb{R}^n$ be an integral polytope. There exists a polynomial $L_P(t)$ such that $L_P(t) = \#(tP \cap \mathbb{Z}^n)$ for all $t \in \mathbb{Z}_{>0}$.

Natural question: What polynomials are Ehrhart polynomials? If the dimension is 1, this is trivial: $at + 1$. If the dimension is 2, a classification is known. If the dimension is ≥ 3, it is not known.

For $P \subset \mathbb{R}^n$, let C be the cone generated by $P \times \{1\}$ in \mathbb{R}^{n+1}. The Ehrhart ring $R \subseteq k[x_1, \ldots, x_{n+1}]$ is the k-span of $x_1^{m_1} \cdots x_{n+1}^{m_{n+1}} \in R$ for $(m_1, \ldots, m_{n+1}) \in C \cap \mathbb{Z}^{n+1}$; give it the grading $\text{deg}(x^m) = m_{n+1}$. The Ehrhart polynomial is the Hilbert polynomial of the Ehrhart ring.

The ring R is Cohen-Macaulay, and $\dim R = \dim P + 1$. It need not be generated in degree 1: consider the convex hull P of the points $(0, 0, 0), (1, 0, 0), (0, 1, 0),$ and $(1, 1, 2)$.

Connection to toric varieties: Given a polytope $P \subseteq M$ with $M := \text{Hom}(N, \mathbb{Z})$, construct the normal fan Δ_P of P. For each face Q of P, define $\sigma_Q = \{v \in N \otimes \mathbb{R} : \langle u, v \rangle \leq \langle u', v \rangle \}$ for all $u \in Q, u' \in P$. For each $\sigma \in \Delta$, let $S_{\sigma} := \{u \in M : \langle u, v \rangle \geq 0 \text{ for all } v \in \sigma\}$ and let $U_{\sigma} = \text{Spec } k[S_{\sigma}]$. For an inclusion $\tau \subseteq \sigma$, we get an open immersion $U_{\tau} \hookrightarrow U_{\sigma}$ which are compatible, so glue them. The result is $X_{\Delta_P} = \text{Proj } R_P$.

Date: April 1, 2008.
Definition 0.3. A T-Cartier divisor on X_P is a Cartier divisor that comes from a Weil divisor $D = \sum a_i D_i$ such that D_i corresponds to a T-invariant codimension 1 subvariety (which corresponds to a ray of Δ_P).

Number the rays τ_1, \ldots, τ_r. Let v_i be the first nonzero lattice point on τ_i. Then $D = \sum a_i D_i$ gives rise to the rational polyhedron

$$P_D := \{ u \in M \otimes \mathbb{R} : \langle u, v_i \rangle \geq -a_i \text{ for all } i \}. $$

The upshot is that from P we get a T-Cartier divisor D on X_P, such that $\mathcal{O}(D)$ is ample. Then $L_P(t) = \chi(\mathcal{O}(D)^{\otimes t})$.

Back to classification: For $d = 2$, classify triples $(A(P), I(P), B(P)) \subset \mathbb{R}^3$. Pick: These points lie on a plane in \mathbb{R}^3. Obvious: $B(P) \geq 3$, $A(P) \geq 1/2$.

Theorem 0.4.

- If $I = 1$, then $3 \leq B \leq 9$.
- If $I \geq 2$, then $3 < B \leq 2I + 6$.
- These, together with Pick and the obvious conditions, are the only conditions.

Examples: The triangle with vertices $(0, 0), (b, 0), \text{ and } (0, 1)$ gives $i = 0, b \geq 3$. The triangle with vertices $(0, 0), (3, 0), \text{ and } (0, 3)$ gives $i = 1, b = 3$. The triangle with vertices $(0, 0), (4, 0), \text{ and } (0, 2)$ gives $i = 1, b = 8$. The quadrilateral with vertices $(0, 0), (b - 4, 0), (i + 1, 1), \text{ and } (0, 2)$ gives $i \geq 1, 4 \leq b \leq 2i + 5$. The rectangle with vertices $(0, 0), (i + 2, 0), (i + 2, 2), \text{ and } (0, 2)$ gives $i \geq 1, b = 2i + 6$.

1. Algebraic geometry

Let X be a normal rational surface. Let $d = \deg X$. Let p be the sectional genus of X. If $X = X_P, p = I(P), d = 2A(P)$.

Theorem 1.1 (Schicho 1999). If $p = 1$, then $d \leq 9$. If $p \geq 2$, then $d \leq 4(p + 1)$.

2. Onion skins

Definition 2.1. Given $P \subset \mathbb{R}^2$, define $P = P^{(0)} \supset P^{(1)} \supset P^{(2)} \supset \cdots$, where $P^{(n+1)}$ as the convex hull of the set of interior lattice points of $P^{(n)}$.

Let Δ be the triangle with vertices $(0, 0), (1, 0), \text{ and } (0, 1)$.

Definition 2.2. The level of P is

$$\ell(P) := \begin{cases}
 n, & \text{if } P^{(n)} \text{ is a point or segment} \\
 n + 1/3, & \text{if } P^{(n)} \text{ is equivalent to } \Delta \\
n + 2/3, & \text{if } P^{(n)} \text{ is equivalent to } 2\Delta \\
n + 1/2, & \text{otherwise, where } n \text{ is the last integer such that } P^{(n)} \text{ is nonempty.}
\end{cases}$$

Theorem 2.3 (Haase-Schicho). If $\ell = \ell(P) \geq 1$, then $(2\ell - 1)B \leq 2I + 9\ell^2 - 2$. This is a refinement.

What is the level of a surface? Let

$$\ell(X) = \sup \{ \ell \in \mathbb{Q} : H + \ell K \text{ is effective} \},$$
where H is the divisor of a hyperplane section, and K is a canonical divisor. Then

$$(2\ell - 1)d \leq 9\ell^2 + 4\ell(p - 1)$$

for toric surfaces. Is this true for non-toric rational surfaces?

Reference: Christian Haase and Josef Schicho, “Lattice polygons and the number $2i + 7$”.